Abstract

Abstract Mounting clinical and preclinical evidence demonstrates an important role for the intestinal microbiome in mediating efficacy of immune checkpoint inhibitor (ICI) antibody therapy across a number of tumor contexts. We sought to determine the effects of microbiome modulation on ICI therapy in a clinically recapitulative orthotopic murine lung cancer model. The microbiome of C57Bl/6NHsd mice was sterilized with antibiotic (ampicillin, streptomycin and colistin) for ten days, resulting in a 99.9% mean decrease in fecal aerobic and anaerobic bacterial load in comparison to naïve mice, handled under specific pathogen free (SPF) conditions. Luciferase-expressing murine Lewis lung carcinoma cells (LL/2-Red-FLuc) were surgically implanted into the left lung parenchyma of all animals. Animals were treated with locoregional radiotherapy (2x 9Gy fractions) targeted to the left lung. The gastrointestinal microbiome was reconstituted via oral gavage Q3D of ~1e09/dose commensal A. muciniphila (A. muc) and E. hirae (E. hir) over five doses or sterile saline as control and animals were randomized within commensal/saline treatment groups to equivalent mean tumor burden as measured by Lumina Series III In-Vivo Imaging System (IVIS). Animals were then administered anti-murine PD-1 or isotype control (0.25 mg) antibody (Ab) treatments Q3D over four doses via intraperitoneal injection. Tumor growth was monitored by IVIS over the course of the study, and ex-vivo IVIS was performed on lungs at endpoint (Day 12 post-tumor implantation). Tumor growth of microbiota non-reconstituted antibiotic-sterilized animals was only slightly inhibited by anti-PD-1 therapy. Animals administered commensal A. muc and E. hir and treatments also displayed slightly inhibited tumor growth kinetics, similar to those observed under saline/anti-PD-1 therapy. Fecal microbial sequencing and immunophenotypic analyses are ongoing. This study demonstrates the utility and ongoing development of a clinically recapitulative contextually accurate preclinical murine lung cancer model to assess the effects of specific microbiota in mediating the efficacy of anti-tumor immunotherapy. Citation Format: Benjamin G. Cuiffo, Caitlin S. Parello, Chelsea Ritchie, Nicholas Rivelli, Alexandra Kury, Sallyann Vu, Gavin Gagnon, Veronica Ritchie, Kasey Reardon, Catarina Costa, Samantha Rogers, Gregory D. Lyng, Stephen T. Sonis. Recolonizing microbiota may impact tumor response to PD-1 inhibition following antibiotic and radiotherapy treatment in a bioluminescent orthotopic model of murine lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1499.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call