Abstract
Abstract CD73 has a central role in dictating the adenosine concentration within the tumor as it is the final step in converting extracellular ATP to adenosine. Thus, substantial reduction of CD73 enzymatic activity has the potential to reduce immunosuppression of effector immune cells within the tumor. We present data describing an anti-human CD73 antibody that suppresses CD73 by two mechanisms: 1. direct inhibition of enzymatic activity upon binding to CD73 and 2. rapid, near-complete internalization of the enzyme. Durable reduction of cell-surface CD73 was observed in multiple tumor cell lines both in vitro and in vivo. The unique properties of this antibody are a result of the use of a human IgG2-IgG1 hybrid antibody with effector function eliminated by specific mutations of the Fc. The IgG2 sequence of this antibody drives superior internalization of CD73 and enhanced CD73 inhibition. Syngeneic tumor models demonstrate that CD73 contributes to resistance to anti-tumor therapy. Combination therapy with PD-1 blockade and a surrogate anti-mouse-CD73 antibody resulted in a better anti-tumor efficacy than either treatment alone. Finally, we demonstrate a novel technique for assessing CD73 enzymatic activity in situ that has potential for clinical application. These data support antibody-based anti-CD73 therapy in cancer and highlight a novel mechanism for inhibition of CD73 enzymatic activity. Citation Format: Bryan C. Barnhart, Emanuela Sega, Aaron Yamniuk, Sandra Hatcher, Ming Lei, Haben Ghermazien, Anne Lewin, Xi-Tao Wang, Haichun Huang, Pingping Zhang, Alan Korman. A therapeutic antibody that inhibits CD73 activity by dual mechanisms. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1476.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.