Abstract

Background: Inflammatory heart diseases represent an important clinical problem, nonetheless data regarding activation of cardiac microvascular endothelial cells (MVECs) are limited. Aim: To examine influence of TNF-α and exosomes produced by heart-reactive CD4+ T lymphocytes on activation of cardiac MVECs. Methods: Experimental autoimmune myocarditis (EAM) was induced in wild-type (WT) and TNF-α-deficient (TNF-KO) mice. CD4+ T lymphocytes were isolated from EAM mice at day 21 and activated in vitro to produce conditioned medium and exosomes. Activation of MVECs was assessed by specific assays and leukocyte-to-endothelial adhesion was analysed under shear flow condition using the BioFlux microfluidic system. Results: TNF-KO mice showed lower prevalence of myocarditis when compared to WT mice (50% vs. 90%). Stimulation of MVECs with secretome of antigen-activated autoreactive T cells resulted in upregulation of adhesion molecules (ICAM-1, VCAM-1 and P-selectin), increased ROS and decreased NO production. Addition of anti-TNF-α neutralizing antibodies effectively blocked adhesion of leukocytes to MVECs activated with the conditioned medium. Endothelial activation and dysfunction induced by the conditioned medium were independent of TNF-α produced by T cells. Stimulation of MVECs with T cell-derived exosomes increased ROS and decreased levels of NO and eNOS activation, but exosomes neither increased expression of adhesion molecules in MVECs nor induced their ability to bind leukocytes. Conclusions: TNF-α promotes MVEC activation and EAM development. In this model, autoreactive T cells activate MVECs, and TNF-a produced by MVECs rather than T cells is essential in this process. On the other hand, endothelial dysfunction caused by T cells seems to be mediated mainly by exosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.