Abstract

Background We previously reported that prolonged endoplasmic reticulum (ER) stress contributes to progression from cardiac hypertrophy to heart failure. Statins have an inhibitory effect on cholesterol synthesis, oxidative stresses, protein synthesis and production of inflammatory cytokines, all of which could be associated with ER stress. However, it is unknown whether statins can ameliorate ER stress in heart disease. This study was designed to investigate whether pravastatin could inhibit cardiac remodeling and ameliorate ER stress caused by pressure overload or tumor necrosis factor α (TNF α ). Methods and Results Cardiac hypertrophy was induced by transverse aortic constriction (TAC) for four weeks in C57BL/6 male mice. Either pravastatin (5 mg/kg/d, n=20, TAC+prava group) or its vehicle (n=20) was orally administered to mice. The ER stress signaling pathway was also studied in pressure-overloaded mice hearts and in cultured cardiomyocytes treated with TNF α (10ng/ml) for 24 hours. Four weeks after TAC, both heart-to-body weight ratio (8.68 ± 1.23 in TAC group, 6.92 ± 1.11 in TAC+prava group) and lung-to-body weight ratio (11.08 ± 2.58 in TAC group, 7.92± 3.56 in TAC+prava group) became significantly lower in pravastatin-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular ejection fraction (LVFS and LVEF) were larger in TAC+prava group (48.0±1.9 % and 80±1.9% respectively) compared with TAC group (LVFS and LVEF, 34.8 ±1.4% and 65 ±3%; P<0.01 VS TAC group each). Markers of ER stress such as an increase in ER chaperones and CHOP expressions and enhanced phosphorylation of eIF2 α were observed in the hearts of TAC mice, while pravastatin treatment significantly blunted these changes. Pravastatin-treated TAC mice also showed a decrease of cardiac apoptosis. Cardiac expression of TNF α was increased in TAC mice, and TNF α induced ER stress in cultured neonatal rat cardiomyocytes, either of which was significantly inhibited by pravastatin. Conclusions These findings indicate that pravastatin inhibits cardiac remodeling in mice subjected to pressure overload, and this action is associated with inhibition of the ER stress signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call