Abstract

Introduction: The underlying mechanisms by which empagliflozin (EMPA) and other sodium glucose co-transporter 2 (SGLT2) inhibitors attenuate heart failure (HF) are still poorly understood. However, this protection does not appear to be fully explained by their antihyperglycemic or diuretic effects. Hypothesis: EMPA attenuates HF by direct effects on the heart to improve its metabolism and function. Methods: C57BL/6J mice (4-6 months) were subjected to transverse aortic constriction (TAC) or sham surgeries. Two weeks after TAC, EMPA (10 mg/kg/day) or vehicle was administered daily for 4 additional weeks. Cardiac function was assessed by echocardiography and cardiac substrate metabolism measured in isolated perfused hearts. Transmission electron microscopy was used to evaluate mitochondrial morphology and molecular docking analysis to predict potential cardiac targets of EMPA. Results: EMPA increased survival and attenuated adverse left ventricle remodeling and cardiac fibrosis after TAC. EMPA also attenuated left ventricular systolic dysfunction (ejection fraction 51.6 vs. 40.2% p<0.05; fraction shortening 28.8 vs 18.4% p<0.05). EMPA rescued impaired glucose and fatty acid oxidation in failing hearts, while reducing glycolysis. Molecular docking analysis and isolated perfused heart experiments indicated that EMPA can directly bind glucose transporters in the heart to reduce glycolysis, and enhance AMP-activated protein kinase. EMPA treatment enhanced mitochondrial biogenesis, restored mitochondria cristae integrity, increased expression of endogenous antioxidants, and reduced cellular apoptosis caused by leakage of cytochrome C from mitochondria into the cytosol. These beneficial cardiac effects of EMPA occurred despite no alterations in fasting blood glucose, body weight, or daily urine volume. Conclusions. Our study demonstrated that EMPA may directly bind glucose transporters and reduce excessive glycolysis in failing hearts. EMPA enhanced mitochondrial biogenesis, improved mitochondrial oxidative phosphorylation, and reduced mitochondria-mediated apoptosis, thereby attenuating cardiac dysfunction and progression of HF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call