Abstract

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are associated with atherosclerosis. Expression of UPR target genes such as activating transcription factor 3 (ATF3) and ATF4 is markedly increased in human atherosclerotic lesions. Staining for these proteins co-localizes with the staining with antibodies that recognize the aldehydic epitopes of oxidized LDL, suggesting that lipid-derived aldehydes could be involved in mediating ER stress and UPR. We examined the role of phospholipid aldehyde, 1-palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphocholine (POVPC), unsaturated lipid-derived aldehydes- 4-hydroxy, trans -2-nonenal (HNE) and acrolein in the induction of ER-stress and UPR in human aortic endothelial cells (HAEC) and human umbical vein endothelial cells (HUVEC). POVPC, HNE and acrolein (10 –25 μM) increased the phosphorylation of eIF2α (eukaryotic initiation factor-2α) by 1.5–5 fold (P<0.001) and induced its downstream effector proteins - ATF4 (1.5–3.5 fold; P<0.001) and ATF3 (4–10 fold; P<0.0001). Incubation of HAEC with these aldehydes also increased the adhesion of THP-1 cells (monocyte) to HAEC by 1.4–1.6 fold (P<0.01). Moreover, incubation of endothelial cells with POVPC increased the mRNA level of the pro-inflammatory cytokine IL-8 by >25 fold (P<0.0001). Chemical chaperone, phenyl butyric acid (PBA), diminished aldehydes-induced expression of ATF3 and ATF4 proteins, endothelial cell-monocyte adhesion and IL-8 formation by 80–95% (P<0.001). POVPC (10–25 μM) also activated JNK by (3–6 fold) in HAEC. Reduction of POVPC to its corresponding alcohol, 1-palmitoyl-2-(5-hydroxyvaleroyl)- sn -glycero-3-phosphocholine (PHVPC) inhibited JNK activation by 74 ± 14 % (P<0.001). Pharmacological inhibition of JNK, inhibited the aldehyde-induced induction of ATF3 and ATF4 proteins by 70–90 % (P<0.001) but not the phosphorylation of eIF2α, and PBA inhibited the POVPC-induced JNK activation by 85 ± 11 % (P<0.001). These data suggest that lipoprotein oxidation products activate endothelial cells in part by inducing ER-stress and their inflammatory signaling could be attenuated by chemical chaperones of protein folding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call