Abstract

Introduction: In addition to its roles as a vascular signaling molecule, nitric oxide (NO) plays roles in metabolism. Mice deficient in eNOS are overweight and develop insulin resistance. It is not known whether the metabolic effects are due to primary roles of NO, or to increased visceral adiposity, leading to secondary metabolic changes. Hypothesis: We hypothesized that NO plays distinct and separable primary roles in white and brown adipogenesis, which underlie the effects on adiposity, energy metabolism, and expression of thermogenic genes. Methods: We exposed wild-type and mice carrying specific gain of function and loss of function eNOS mutations to cold at 4C for 48 hours and assessed expression of thermogenic gene programs in white and brown adipose tissue. To study cell autonomous effects, we differentiated adipocyte precursors from brown and white fat in the presence of NOS inhibitors and NO donors, as well as with siRNA to knockdown eNOS expression. Results: Cold exposure resulted in upregulation of the thermogenic gene program in brown adipose tissue. Animals carrying a gain of function mutation in eNOS showed increased UCP1 expression even without cold exposure. Induction of thermogenic genes was more pronounced in the animals with gain of function eNOS mutation. Differentiation of adipocyte precursors showed effects of eNOS on adipogenesis. Cells treated with the pharmacologic blockade (L-NAME and L-NA) as well as genetic knockdown (siRNA) showed dose-dependent inhibition of adipocyte differentiation. MitoTracker Red CMXRos staining showed that treatment with the NO donor SNAP increases mitochondrial biogenesis, while L-NAME decreases mitochondrial biogenesis. Conclusions: We show that eNOS-derived NO plays distinct and separable roles in white and brown adipogenesis. In brown adipocytes, eNOS regulates the expression of the thermogenic gene program, with upregulation of expression even without cold exposure, and greater increase in response to cold. In white adipocytes, eNOS-derived NO is required for adipocyte differentiation and mitochondrial biogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.