Abstract
Aims: cell-based therapy with bone marrow stem cells (MSCs) remains a viable option for tissue repair and regeneration. One of the major challenges for cell-based therapy is the limited survival of the cells after in vivo administration. The exact mechanism(s) for impaired in vivo survival of the implanted MSCs remains to be defined. Oxidized low-density lipid protein (ox-LDL) is a natural product in human blood, and the major contributor to the development of atherosclerosis. The present study was to investigate the effect of ox-LDL on the survival of bone marrow stem cells and the mechanisms in vitro. Methods and Results: Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox-LDL (with the final concentration of 10 and 20 ug/ml) for up to 48 hours. Exposure to ox-LDL resulted in significant cell death and apoptosis of MAPCs in association with a significant increase in LDH release in the conditioned media in a dose- and time-dependent manner, indicating significant cell membrane damage. The membrane damage was further confirmed with the rapid entry of the small fluorescent dye FM1-43 as detected using confocal microscope. Ox-LDL generated a significant amount of reactive oxygen species (ROS) in the culture system as measured with electron paramagnetic resonance spectroscopy. The antioxidant N-acetylcysteine (NAC, 0.1 mM) completely inhibited the production of ROS from ox-LDL. However, it didn’t prevent ox-LDL-induced cell death or apoptosis. However, pre-treatment of the cells with the specific membrane protective recombinant human MG53 protein (rhMG53)(66 ug/ml, final concentration) significantly, reduced LDH release and the entry of FM1-43 dye into the cells exposed to ox-LDL. Conclusion: Ox-LDL enhanced cell death and apoptosis of MAPCs with a mechanism independent of ROS generation in vitro. Ox-LDL impaired the survival of MAPCs partially through cell membrane damage in vitro.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.