Abstract
Mitochondrial dysfunction, such as observed in endothelial cells, has been implicated in various cardiovascular diseases including, hypertension and atherosclerosis. Mitochondrial transcription factor 2B (TFB2M) is an essential component to maintain proper transcriptional and functional control of mitochondrial DNA. As well, elongation of endothelial cells is a characteristic of atheroprotective regions within the vasculature, and the relationship between the mitochondria and EC shape is currently unknown. Additionally, recent interest has been focused on mechanisms by which the mitochondria may signal to the nucleus to affect cell function. The aim of our study is to investigate the hypothesis that TFB2M has a novel role in enhancing endothelial function. Human umbilical vein endothelial cells (HUVECs) were harvested 72 hours after adenoviral transduction with TFB2M (100 moi). HUVECs transduced with TFB2M showed an elongated cell morphology when compared to GFP control. To further investigate the effect of TFB2M on regulating mitochondrial function and cell shape, immunoblotting was carried out for markers involved in mitochondrial function/dynamics and markers indicative of cytoskeleton reorganization. TFB2M transduction resulted in increased expression of mitochondrial biogenesis marker VDAC (2.6 fold increase), mitochondrial fusion protein MFN2 (2.1 fold increase), and phosphorylated myosin phosphatase targeting protein MYPT1 at Thr850 (2.2 fold increase, p < 0.05 for all proteins). Additionally, fluorescence microscopy showed enhanced mitochondrial fluorescence in TFB2M transduced cells using mitotracker red staining (3.5 fold increase, p < 0.001). These data indicate that TFB2M has a previously undiscovered function contributing to altered EC function and shape, potentially through a novel mitochondrial retrograde signaling mechanism. Further research will focus on distinguishing the exact mechanisms culminating in a protective EC phenotype and the beneficial role of endothelial TFB2M-mediated enhanced mitochondrial function in the treatment of EC dysfunction associated with various cardiovascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.