Abstract
Brain pericytes are a constituent of the neurovascular unit and play various important roles in brain functions, such as regulation of capillary blood flow, maintenance of blood-brain barrier and angiogenesis. Previous reports have elucidated that PDGF-B prevents neuronal cell death during ischemic insults in adult rodent models; however, the detailed mechanisms by which PDGF-B signaling protects neurons from ischemic damage are not fully understood. In the present study, we investigated whether brain pericytes play neuroprotective roles in brain ischemia, using a permanent middle cerebral artery occlusion stroke model (MCAO) and cultured human brain pericytes. Immunohistochemistry revealed that the expression of PDGF receptorβ(PDGFRβ) was induced predominantly in pericytes in peri-infarct areas. PDGF-B induced marked phosphorylation of Akt in cultured pericytes. Consistently, Akt was markedly phosphorylated in the PDGFRβ-expressing pericytes in peri-infarct areas. PDGF-B upregulated the expression of neurotrophins, such as neuronal growth factor (NGF) and neurotrophin-3 (NT-3), through Akt activation in the cultured pericytes. We subjected PDGFRβheterozygous knockout (PDGFRβ+/-) mice to MCAO. Infarct volume, as assessed by MAP2 immunostaining, was significantly greater in PDGFRβ+/- than wild-type mice ( 48% increase at day 7, p < 0.01 , n=5). The number of TUNEL positive apoptotic cells was significantly greater in PDGFRβ+/- mice (54 % increase at day 4, p < 0.001 , n=6). Production of NGF and NT-3 at mRNA and protein levels in infarct areas was significantly decreased in PDGFRβ+/- mice (NGF: 28% decrease, p<0.05, NT-3: 22% decrease, p<0.05). Since it has been established that neurotrophin receptors are induced in peri-infarct areas, the decreases in neurotrophin production may increase apoptotic neuronal cell death in the PDGFRβ+/- mice. In conclusion, brain pericytes may have a direct neuroprotective role through secreting neurotrophins via PDGFRβ-Akt signaling, thereby decreasing infarct volume in ischemic stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.