Abstract

Mice with a cardiomyocyte-restricted knock out of STAT3 (KO: alpha-MHC-Cre tg/+; STAT3 flox/flox ) show a continuous decrease of the cardiac capillary density and develop heart failure beyond the age of 9 months. We sought to determine the paracrine influence of cardiomyocyte STAT3 on the endothelial differentiation potential of cardiac progenitor cells (CPC) of the adult mouse heart. Sca-1 + CPC were isolated from male mice hearts by MACS separation. STAT3 was entirely deleted in cardiomyocytes of KO mice, while CPC from KO showed normal expression of STAT3 (confirmed by PCR and Western blot). No difference in the total number of CPC per heart was observed between wildtype (WT: STAT3 flox/flox ) and KO mice. FACS analysis revealed a reduced number of endothelial progenitor cells (as defined by coexpression of Sca-1, CD31 and CD38, −25%, P<0.05) among CPC from KO compared to CPC from WT. The differentiation potential of CPC from WT and KO was analyzed during in vitro culture on fibronectin-coated plates. After 4 weeks of culture RT-PCR for CD31 and immunohistochemistry (IHC) for endothelial cell (EC) marker tie2 and isolectin B4 was performed. CPC from WT showed markedly more efficient EC differentiation and tube formation compared to CPC from KO (p<0.01). In contrast, adipocyte differentiation was enhanced in CPC from KO (p<0.05, oil red staining and RT-PCR). Proliferation capacity of CPC from KO was reduced by 33% (p<0.01) as compared to CPC from WT. Microarray results of freshly isolated CPC were consistent with the differences in EC and adipocyte differentiation (i.e. prostaglandin E receptor 3 up 2.3-fold in CPC from WT, Lipocalin-2 up 2.7-fold in CPC from KO). We did not observe cardiomyocyte differentiation (IHC for alpha-sarcomeric actinin; RT-PCR for Nkx 2.5, alpha-MHC, or alpha-skeletal actin) of CPC from both genotypes, neither in vitro by addition of oxytocin, 5-AZA, DMSO, nor following intramyocardial injection of CPC in vivo. Conclusion: STAT3-dependent paracrine mediators released from cardiomyocytes are determinants of differentiation and vasculogenic properties of new EC derived from cardiac progenitor cells. The identification of these factors may offer new approaches to enforce the endogenous vasculogenic repair potential of the adult heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call