Abstract

Abstract Background: Patient-derived tumor xenografts (PDX) are powerful tools to study cancer biology, cancer genomics and developmental therapeutics. A common problem in the development of PDX models is proliferation of atypical lymphocytes at the implant site, which often overtake or limit the growth of the original tumor. This atypical proliferation has been described as Xenograft-Associated B cell Lymphoproliferative Disease (XABLD) in our PDX models. In this study, we characterized XABLD cases by morphology, immunophenotyping and genomic profiling. We hypothesize that XABLD tumors are morphologically and phenotypically similar to EBV-driven lymphoma of the elderly and may function as a surrogate model for that lymphoma. Materials and Methods: Models were generated from patient tissue collected under NCI Tissue Procurement Protocol (clincialtrials.gov: NCT00900198) and CIRB Tissue Procurement Protocol 9846 for development of models for NCI's Patient-Derived Models Repository (https://pdmr.cancer.gov). Specimens were implanted subcutaneously in NOD/SCID/IL2Rg null (NSG) mice and animal health was monitored throughout the study. Tumors in mice with suspected XABLD were harvested and reviewed by histology and immunohistochemical analysis for CD45, B and T cell markers and EBV status. All samples in this study were classified by the Lymph2Cx NanoString cell of origin assay and transcriptome profiling. Results: XABLD-associated mice had rapidly growing CD45-positive tumors at the implantation site. Histopathological features were consistent with EBV-driven diffuse large B-cell lymphoma (DLBCL) primarily of polymorphous subtype. All XABLD specimens were diffusely positive for CD20 and EBNA, and most cases contained tumor infiltrating CD8-positive T-cells. Out of 42 cases, 36 were PD-L1-positive and 26 were PD-1-positive by IHC. 39 cases exhibited an activated B cell (ABC) phenotype, which is predominant in EBV-positive DLBCL. Conclusion: XABLD development has been seen across multiple patient histologies from both solid tumor and circulating tumor cells tissues of origin. The clinical presentation, morphology and molecular characteristics of XABLD cases were similar to EBV-driven DLBCL. As DLBCL is an aggressive disease with limited treatment options, our early-passage XABLD models may be useful in the preclinical evaluation of new therapies for EBV-positive DLBCL. Grant Support: This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. Citation Format: Tomas Vilimas, Gloryvee Rivera, Brandie Fullmer, Wiem Lassoued, Lindsay Dutko, William Walsh, Amanda Peach, Corinne Camalier, Li Chen, Rajesh Patidar, Suzanne Borgel, John Carter, Howard Stotler, Raymond Divelbiss, Jesse Stottlemyer, Margaret Defreytas, Michelle M. Gottholm-Ahalt, Michelle A. Crespo-Eugeni, Sean McDermott, Yvonne A. Evrard, Melinda G. Hollingshead, Biswajit Das, Chris Karlovich, Vivekananda Datta, James H. Doroshow, P. Mickey Williams. Xenograft-associated B cell lymphoproliferative disease as a surrogate model to study Epstein-Barr virus (EBV) driven lymphoma of the elderly [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1038.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call