Abstract

We previously identified a critical role for MuRF1 in suppressing pathologic cardiac hypertrophy. To extend these observations to other pathologic processes, we tested the role of MuRF1 in cardiac ischemia reperfusion (I/R) injury. We challenged MuRF1 transgenic (Tg) mice to I/R injury both ex situ and in vivo. First, we examined isolated MuRF1 Tg and age-matched sibling wild-type (WT) hearts after global ischemia (15 min) followed by reperfusion (20 min) in a Langendorff apparatus. Baseline function of MuRF1 Tg hearts did not significantly differ from WT hearts (mean left ventricular developed pressure (LVDP) 88.5 +/− 18 vs. 82.5 +/− 6.7, respectively; n = 4/group). Mean LVDP of hearts from MuRF1 Tg mice after reperfusion was 76.0 +/− 22.9% of baseline function compared to 27.2 +/− 13.3% in WT hearts (N = 5/group, P< 0.05)). To confirm that MuRF1 is cardioprotective in vivo, we subjected MuRF1 Tg and WT mice to a 30 minute ligation of the left anterior descending coronary artery, followed by 24 hours reperfusion. Mice underwent conscious echocardiography at baseline and after 24 hours; cardiac function was further interrogated by Millar pressure volume catheterization at 24 hours. Additionally, hearts underwent a histological evaluation of area at risk and infarct size. By echocardiography, a ~7% decrease in fractional shortening was identified in MuRF1 Tg mice after 24 hours reperfusion compared to baseline. This was in striking contrast to WT mice, which exhibited ~48% decrease in fractional shortening. Steady state catheterization measurements showed a significantly higher ejection fraction in MuRF1 Tg compared to WT mice after I/R injury (81.6 ± 2.3% vs. 49.0 +/− 4.0%, P < 0.05). Contractility reflected by +dP/dt max was better preserved in MuRF1 Tg compared to WT mice after I/R injury (12,614 +/− 776 vs. 7,448 +/−752, N = 3–12/group, P < 0.05). Histologically, the area of infarct in MuRF1 Tg mice was significantly smaller (10.0 +/− 0.8%) than in WT mice (25.5 +/− 2.5%, N = 4/group, P < 0.05). We demonstrate here for the first time that cardiac MuRF1 expression preserves function after I/R injury in vivo. Since MuRF1 is known to interact with metabolic and structural targets, this model will allow us to identify mechanisms by which MuRF1 modifies cardiac pathophysiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.