Abstract
Obesity-induced hypertension is associated with vascular endothelial dysfunction. Recently, our laboratory has demonstrated a critical role of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in cardiovascular regulation. Here, we tested the hypothesis that dysregulation of mTORC1 signaling is involved in the endothelial dysfunction associated with obesity in mice and humans. We found that diet-induced obese (DIO) mice that display vascular endothelial dysfunction as compared to lean controls have increased mTORC1 signaling in aortic lysates indicated by the elevated (p<0.05) phosphorylated levels of mTOR and its downstream signaling targets S6-kinase and the ribosomal S6 protein measured by Western blot. Increased vascular mTORC1 signaling in DIO mice was associated with increased aortic NOX2 mRNA expression (2.0±0.2 vs. 1.0±0.3AU in lean controls; p<0.05). Isolated abdominal subcutaneous adipose arterioles from non-diabetic obese (BMI ≥30 kg/m 2 ; n=4; age 51±6 yrs; BMI 54±3 kg/m 2 ) humans exhibited a strong trend towards increased phosphorylated S6 protein compared to normal-weight (BMI <30kg/m 2 ; n=3; age 44±15 yrs; BMI 26±1 kg/m 2 ) individuals (5.0±1.9 vs 0.8±0.4AU; p=0.12), suggesting increased vascular mTORC1 signaling in human obesity. Next, we used an adenoviral construct of a constitutively active (CA) S6-kinase (Ad-CAS6K) to enhance mTORC1 signaling. In mouse endothelial cells, Ad-CAS6K increased mRNA expression of oxidative stress (NOX1and NOX2) and inflammatory markers (IL-1β) and decreased endothelial NOS expression (p<0.05). Transfection of aortic rings with the Ad-CAS6K resulted in impairment in acetylcholine-induced relaxation (Max. relaxation: 67± 5 vs. 81 ±3%; p<0.05) without altering the relaxation evoked by sodium nitroprusside (Max. relaxation: 90±1% vs. 90±2%) recapitulating the vascular phenotype in obese mice. Taken together, our data demonstrate a novel role of the mTORC1 signaling pathway in the regulation of vascular endothelial function. Our data also implicate dysregulation of the endothelial mTORC1 signaling pathway in the endothelial dysfunction associated with obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.