Abstract
Aim: To determine the role of brain Gαi 2 proteins in mediating sodium-evoked PVN neuronal activation and blood pressure regulation in conscious rats. Methods: 24-h intracerebroventricular scrambled (SCR) or Gαi 2 oligodeoxynucleotide (ODN; 25μg/5μl)-pretreated conscious Sprague-Dawley rats were monitored for changes in MAP in response to HS (IV 3M NaCl; 0.14 ml/100g). Rats were sacrificed at control (C), 10, 40, or 100-min post-HS for PVN cFos IHC and analysis of plasma AVP and NE. Separate groups received a V 1a receptor antagonist (IV; 10 μg/ml/kg) 5-min prior to HS. Results: No difference was observed in sodium-evoked peak change in MAP and MAP remained elevated at 100-min in Gαi 2 but not SCR ODN rats (MAP 100-min post-HS [mmHg] SCR 134±2 vs Gαi 2 146±3, P<0.05). Significant increases in the number of Fos + PVN magnocellular neurons were observed post-HS in SCR and Gαi 2 ODN groups ([Fos + cells] SCR C 3±1 vs 100-min 31±5; Gαi 2 C 2±0 vs 100-min 26±4, P <0.05). A rapid increase in circulating AVP was observed at 10-min in both SCR (plasma AVP [pg/mL] C 12.2±1.6 vs 10-min 62.8±6.9, P <0.05) and Gαi 2 ODN (plasma AVP [pg/mL] C 12.1±1.5 vs 10-min 67.7±7.7 P <0.05) groups and returned to control levels at 40- and 100-min. SCR ODN rats exhibited significant increases in the number of Fos + PVN parvocellular neurons ([Fos+ cells] C 15±1 vs 100-min 67±4, P <0.05) and a significant suppression in circulating NE post-HS (plasma NE [nmol/L] C 44.1±4.9 vs 10-min 17.4±3.9, P <0.05). Gαi 2 ODN rats exhibited significantly less Fos + parvocellular neurons compared to SCR ODN rats (100-min [Fos+ cells] SCR 67±4 vs Gαi 2 30±2, P <0.05) and failed to suppress circulating NE ( P >0.05). V 1a receptor blockade prevented a HS-evoked increase in MAP in SCR ODN rats while Gαi 2 ODN rats exhibited elevated MAP (MAP 100-min [mmHg] SCR 125±2 vs Gαi 2 135±0, P <0.05). Conclusion: Brain Gαi 2 proteins are required to mediate sodium-evoked parvocellular sympathetic, but not magnocellular vasopressinergic, responses to maintain physiological blood pressure regulation. A significant component of blood pressure control in this setting is regulated by the sympathetic nervous system, as supported by the attenuated activation of PVN parvocellular neurons and a failure to suppress circulating levels of NE in Gαi 2 ODN rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.