Abstract

TRAF associated NF-κB activator (TANK) is adaptor protein which was identified as a negative regulator of TRAF-, TBK1- and IKKi-mediated signal transduction through its interaction with them. Besides its important roles in the regulation of immune response, it has been reported that TANK contributes to the development of autoimmune nephritis and osteoclastogenesis. However, its functions in cardiovascular diseases especially cardiac hypertrophy is largely unknown. In the present study, we interestingly observed that TNAK expression is increased by 240% in human hypertrophic cardiomyopathy(HCM)tissue and 320% in mouse hypertrophic heart after aortic banding (AB), indicating that TANK may be involved in the pathogenesis of this diseases. Subsequently, cardiac-specific TANK knockout (TANK-KO) and transgenic(TANK-TG)mice were generated and subjected to AB for 4 to 8 weeks. Our results demonstrated that TANK deficiency prevented against cardiac hypertrophy and fibrosis induced by pressure overload,as evidenced by that the cardiomyocytes enlargement and fibrosis formation was reduced by about 34% and 43% compared with WT mice, respectively. Conversely, TANK-TG mice showed an aggravated effect on cardiac hypertrophy in response to pressure overload with 36% and 47% increase of cardiomyocytes enlargement and fibrosis formation compared with non-transgenic mice. More importantly, in vitro experiments further revealed that TANK overexpression which was mediated by adenovirus in the cardiomyocytes dramatically increased the cell size and the expression of hypertrophic markers, whereas TANK knockdown had an opposite function. Mechanistically, we discovered that AKT signaling was activated (230%) in the hearts of TANK-TG mice, while being greatly reduced in TNAK-KO hearts after aortic banding. Moreover, blocking AKT/GSK3β signaling with a pharmacological AKT inhibitor reversed cardiac dysfunction of TANK-TG mice. Collectively, our data show that TNAK acts as a novel regulator of pathological cardiac hypertrophy and may be a promising therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call