Abstract

We have developed an original scaffold-free tissue engineering approach, “cell sheet engineering”, and this technology has been already applied to regenerative medicine of various organs including heart. As the bioengineered three-dimensional cardiac tissue is expected to not only function for repairing the broad injured heart but also to be the practicable heart tissue models, we have developed the cell sheet-based perfusable bioengineered three-dimensional cardiac tissue. Recently we have also developed the unique suspension cultivation system for the high-efficient cardiac differentiation of human iPS cells. Fourteen-day culture with the serial treatments of suitable growth factors and a small compound in this stirring system with the suitable dissolved oxygen concentration produced robust embryoid bodies that showed the spontaneous beating and were mainly composed of cardiomyocytes (~80%). When these differentiated cells were cultured on temperature-responsive culture dishes after the enzymatic dissociation, the spontaneous and synchronous beating was observed accompanied with the intracellular calcium influx all over the area even after cell were detached from culture dishes as cell sheets by lowering the culture temperature. The cardiac cell sheets were mainly composed of cardiomyocytes (~80%) and partially mural cells (~20%). Furthermore, extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid, and this propagation was inhibited by the treatment with some anti-arrhythmic drugs. When the triple layered cardiac tissue was transplanted onto the subcutaneous tissue of nude rats, the spontaneous pulsation was observed over 2 months and engrafted cardiomyocytes were vascularized with the host tissue-derived endothelial cells. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue. Now we are developing the vascularized thickened human cardiac tissue by the repeated layering of cardiac cell sheets on the artificial vascular bed in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call