Abstract

We recently reported that the (pro)renin receptor (PRR) is a key component of the brain renin-angiotensin system, mediating the majority of Ang II formation, and plays a pivotal role in the development of hypertension. Its importance in obesity-related metabolic syndrome is, however, unknown. We hypothesize that brain PRR plays a regulatory role in high-fat diet (HFD) induced metabolic syndrome. To test our hypothesis, neuron-specific PRR knockout (PRRKO) mice and wildtype (WT) littermates were fed with either HFD (60% calories from fat) or normal fat chow (NFD, 10% calories from fat) with matching calories for 16 weeks. Weekly body weight (BW) and monthly fasting blood glucose (FBG) measurements were recorded and end point glucose tolerance (GTT) and insulin sensitivity tests (IST) were performed. Blood pressure (BP) was recorded using radiotelemetry in conscious free moving mice. We observed no difference in BW or food intake between genotypes in either HFD or NFD. The baseline BP and heart rate (HR) were similar between PRRKO and WT mice; however, following 16 weeks HFD the BP (101±6 vs. 111±3 mmHg, P=0.035) and HR (536±12 vs. 578±4 BPM, P=0.046) were significantly lower in PRRKO compared with WT mice. Interestingly, neuronal PRR deletion attenuated the elevation of FBG (127.12±10.46 vs. 167.77±16.57 mg/dl, P=0.039) induced by HFD. Glucose tolerance was significantly improved in PRRKO compared with WT following 16 weeks of HFD (AUC: 20557±894 vs. 29994±2976, P=0.006), while there was no difference in the IST between the groups. We also found that HFD mice had higher levels of plasma (pro)renin (9.95±1.83 vs. 2.74± 0.47 ng/ml, P=0.005) and brain angiotensin II (656.8±94.9 vs. 375.3±32.0 pg/g, P=0.02), as well as higher cardiac (ΔHR to propranolol: -150±6 vs. -82±15 bpm , P=0.0054) and vasomotor (ΔBP to chlorisondamine: -44±3 vs. -22±3 mmHg, P=0.0004) sympathetic tone, suggesting that the HFD-induced rise in BP is sympathetically mediated and associated with elevation of brain angiotensin II. Our data indicates that PRR deletion in the neurons protects against glucose intolerance and BP elevation in HFD mice with no effect on insulin sensitivity or body weight. We conclude that neuronal PRR plays a role in the development of obesity-related metabolic syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call