Abstract
Rodent drug self-administration leads to compromised ability of astrocytes to maintain glutamate homeostasis within the brain's reward circuitry, as well as reductions in surface area, volume, and synaptic colocalization of astrocyte membranes. However, the mechanisms driving astrocyte responses to cocaine are unknown. Here, we report that long-access cocaine self-administration followed by prolonged home cage abstinence results in decreased branching complexity of nucleus accumbens astrocytes, characterized by the loss of peripheral processes. Using a combination of confocal fluorescence microcopy and immuno-gold electron microscopy, we show that alterations in astrocyte structural features are driven by microglia phagocytosis, as labeled astrocyte membranes are found within microglia phagolysosomes. Inhibition of complement C3-mediated phagocytosis using the neutrophil inhibitory peptide (NIF) rescued astrocyte structure and decreased cocaine seeking behavior following cocaine self-administration and abstinence. Collectively, these results provide evidence for microglia pruning of accumbens astrocytes across cocaine abstinence which mediates cocaine craving.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.