Abstract

Metasurface color filters (MCFs) have attracted considerable attention thanks to their compactness and functionality as a candidate of an optical element in a miniaturized image sensor. However, conventional dielectric and plasmonic MCFs that have focused on color purity and efficiency cannot avoid reflection in principle, which degrades image quality by optical flare. Here, we introduce absorptive-type MCFs through truncated-cone hyperbolic metamaterial absorbers. By applying a particle swarm optimization method to design multiple parameters simultaneously, the proposed MCF is theoretically and numerically demonstrated in perceptive color on CIELAB and CIEDE2000 with suppressed-reflection. Then, a color filter array is numerically proven in 255 nm of sub-pixel pitch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call