Abstract

Abstract The early stage of massive galaxy evolution often involves outflows driven by a starburst or a central quasar plus cold mode accretion (infall), which adds to the mass build-up in the galaxies. To study the nature of these infall and outflows in the quasar environments, we have examined the correlation of narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties, such as their broad absorption-line (BAL) outflows and radio-loudness, using spectral data from SDSS-BOSS DR12. Our results show that the incidence of associated absorption lines (AALs) and outflow AALs is strongly correlated with BALs, which indicates most AALs form in quasar-driven outflows. Multiple AALs are also strongly correlated with BALs, demonstrating quasar outflows tend to be highly structured and can create multiple gas components with different velocity shifts along our line of sight. Infall AALs appear less often in quasars with BALs than quasars without BALs. This suggests that BAL outflows act on large scale in host galaxies and inhibit the infall of gas from the IGM, supporting theoretical models in which quasar outflow plays an important role in the feedback to host galaxies. Despite having larger distances, infall AALs are more highly ionized than outflow AALs, which can be attributed to the lower densities in the infall absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.