Abstract

In recent years, common lambsquarters (Chenopodium album L.) populations from sugar beet fields in different European countries have responded as resistant to the as-triazinone metamitron. The populations have been found to have the same D1 point mutation as known for atrazine-resistant biotypes (Ser264 to Gly). However, pot experiments revealed that metamitron resistance is not as clear-cut as observed with triazine resistance in the past. The objectives of this study were to clarify the absorption, translocation and metabolic fate of metamitron in C. album. Root absorption and foliar absorption experiments showed minor differences in absorption, translocation and metabolism of metamitron between the susceptible and resistant C. album populations. A rapid metabolism in the C. album populations was observed when metamitron was absorbed by the roots. The primary products of metamitron metabolism were identified as deamino-metamitron and metamitron-N-glucoside. PABA, known to inhibit the deamination of metribuzin, did not alter the metabolism of metamitron, and nor did the cytochrome P450 inhibitor PBO. However, inhibition of metamitron metabolism in the presence of the cytochrome P450 inhibitor ABT was demonstrated. Metamitron metabolism in C. album may act as a basic tolerance mechanism, which can be important in circumstances favouring this degradation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.