Abstract
We describe the essential features of the Dual Laser Plasma (DLP) vacuum ultraviolet photoabsorption spectroscopy technique and the characteristics of our DLP apparatus. We show that the time- and space-resolved capabilities of this technique are suited to the monitoring of the dynamics of expanding plasma plumes in the regime used for pulsed laser deposition of materials. Examples of spectra showing the spatial and temporal evolution of a lithium plasma expanding in vacuum are presented. A model based on a self-similar expansion for the plume is developed and used to analyse the shape of absorption lines. Measurements in the photoionisation continuum of Li + are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.