Abstract
The absorption spectra of three-dimensional metal-dielectric photonic crystals (PCs) are studied using computer simulation by the finite difference time domain method and the layered Korringa-Kohn-Rostoker method. The band structure of a three-dimensional dielectric PC is obtained by the plane wave expansion method. The explanation of absorption spectra of PC based on its comparison with the band structure and Fabry-Perot resonances inside a PC plate is given. The intensity distribution of an electric field using FDTD inside the metal-dielectric PC for three various structures is analyzed. It is shown that spherical cavities in a dielectric PC “focus” the field inside cavities at certain wavelengths. This leads to an increase of absorption at these wavelengths if metal spheres are located in the centers of those cavities. This effect can be considered as an analogue of the Borrmann effect in X-ray spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.