Abstract

A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.