Abstract
To evaluate the potential of phosphate ester prodrugs to significantly improve the absorptive flux of poorly soluble parent drugs. Absorptive transport studies of parent drugs and their prodrugs were carried out in Caco-2 cells. Prodrugs of parent drugs with variable aqueous solubilities were tested: Hydrocortisone-phosphate/Hydrocortisone, Fosphenytoin/phenytoin, TAT-59/DP-TAT-59, and Entacapone phosphate/Entacapone. Additional absorption studies were carried out in rats. Absorptive fluxes of DP-TAT-59 and phenytoin increased 9.8 or 3.3-fold after dosing TAT-59 and 500 microM fosphenytoin, respectively. Hydrocortisone's flux did not increase with hydrocortisone-phosphate at 100 microM. Permeability of the highly lipophilic and protein bound compound, DP-TAT-59, was significantly increased with serosal albumin. No permeability increase was observed for the other drugs with albumin. Entacapone phosphate failed to improve the flux of entacapone compared to an entacapone solution, but the prodrug solution did yield higher entacapone plasma levels in rats when compared with an entacapone suspension. Ideal phosphate prodrug candidates are characterized by high permeability and low solubility (BCS Class II drugs). For low dose BCS Class II drug candidates, however, no biopharmaceutical advantage may be gained. Phosphate prodrugs of parent drugs with limited permeability may fail. When screening highly lipophilic parent drugs transport studies should be done with albumin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.