Abstract
Porous materials with corrugated surfaces are widely used in the field of noise control, as they can effectively convert sound energy into heat resulting in sound absorption. It is important to predict the absorption coefficients of sound-absorbing devices for the design of appropriate shape and size. In this study, a semi-analytic method of layered rigorous coupled-wave analysis (LRCWA) is proposed to predict the absorption of nonplanar periodic materials. Starting from the division of corrugated surfaces into multiple layers, we process the sound behavior in each layer as in a rectangular periodic modulation structure. By connecting the interlayer boundary continuity conditions, the acoustic coupling equation of the whole structure can be established. The effectiveness and practicability of the LRCWA method is validated based on the comparisons with the experimental data and the simulation of finite element method. Besides the absorption coefficient that is mainly discussed in this work, the proposed method is universal in analyzing the physical properties of nonplanar periodic structures, which can greatly accelerate the delicate design and optimization of such structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.