Abstract

Despite extensive literature describing the biological effects of polyphenols, little is known about their absorption from diet, one major unresolved point consisting of the absorption of the bound forms of polyphenols. In this view, in the present work we studied the absorption in humans of phenolic acids from coffee, a common beverage particularly rich in bound phenolic acids, such as caffeic acid, ferulic acid, and p-coumaric acid. Coffee brew was analyzed for free and total (free + bound) phenolic acids. Chlorogenic acid (5'-caffeoylquinic acid), a bound form of caffeic acid, was present in coffee at high levels, while free phenolic acids were undetectable. After alkaline hydrolysis, which released bound phenolic acids, ferulic acid, p-coumaric acid, and high levels of caffeic acid were detected. Plasma samples were collected before and 1 and 2 h after coffee administration and analyzed for free and total phenolic acid content. Two different procedures were applied to release bound phenolic acids in plasma: beta-glucuronidase treatment and alkaline hydrolysis. Coffee administration resulted in increased total plasma caffeic acid concentration, with an absorption peak at 1 h. Caffeic acid was the only phenolic acid found in plasma samples after coffee administration, while chlorogenic acid was undetectable. Most of caffeic acid was present in plasma in bound form, mainly in the glucuronate/sulfate forms. Due to the absence of free caffeic acid in coffee, plasma caffeic acid is likely to be derived from hydrolysis of chlorogenic acid in the gastrointestinal tract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call