Abstract
ABSTRACT The absorption of dilute CO2 into aqueous solutions of sterically hindered 2-methyl aminoethanol (MAE) and the desorption of CO2 from CO2-loaded MAE solutions into N2 stream were investigated separately for the various combinations of operational variables, using a hydrophobic microporous hollow fiber (polytetrafluoroethylene, PTFE) contained gas-liquid contactor with aqueous solutions of MAE as liquid media in the shell side at 30°C. The absorption of CO2 in this contactor is governed by resistance in the liquid and hollow fiber phases. The resistance to diffusion in the hollow fiber phase amounts to 76–80% of the total resistance. Nevertheless, the absorption rates of CO2 into aqueous MAE solutions in this contactor are higher than those into aqueous solutions of sterically hindered 2-amino-2-methyl-1-propanol (AMP) in the stirred tank with a plane unbroken gas-liquid interface. The process of desorption of CO2 from CO2-loaded MAE solutions can be regarded as being controlled by diffusion and chemical reaction in both the stagnant film of the liquid phase and the liquid-filled pore of the hollow fiber phase under the slow or intermediate reaction regime. Both absorption and desorption rates under the simultaneous absorption-desorption operation in a single unit tend to approach the respective constant values as process time elapses. The total absorption rate here seems to be almost balanced with the total desorpion rate at the constant mass transfer rate periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.