Abstract
CO2 diluted with N2 was absorbed by aqueous triethanolamine (TEA) solutions in a jet absorber consisting of a high pressure stainless steel vessel with a pressure nozzle at the top. The gas mixture and the aqueous solution were passed simultaneously, through the pressure nozzle into the absorber. Due to the high shear imparted to the liquid very fine droplets were produced, which resulted in a very high interfacial area and rapid mass transfer. CO2 was absorbed rapidly by the TEA solution. The effects of gas and liquid flow rates, solution concentration and CO2 partial pressure on CO2 loading per unit mole of TEA and the overall mass transfer coefficient were examined. CO2 loading per mole of TEA increased with gas flow rate and decreased with liquid flow rate and solution concentration. The overall mass transfer coefficient was found to increase with gas and liquid flow rates. Both the CO2 removal per mole of TEA and the overall mass transfer coefficient were found to be a strong function of power dissipated at the nozzle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.