Abstract

Absorption of CO2 and CS2 molecules into the Hofmann-type three-dimensional porous coordination polymer (PCP) {Fe(Pz)[Pt(CN)4]}n (Pz = pyrazine) was theoretically explored with the ONIOM(MP2.5 or SCS-MP2:DFT) method, where the M06-2X functional was employed in the DFT calculations. The binding energies of CS2 and CO2 were evaluated to be -17.3 and -5.2 kcal mol(-1), respectively, at the ONIOM(MP2.5:M06-2X) level and -16.9 and -4.4 kcal mol(-1) at the ONIOM(SCS-MP2:M06-2X) level. It is concluded that CS2 is strongly absorbed in this PCP but CO2 is only weakly absorbed. The absorption positions of these two molecules are completely different: CO2 is located between two Pt atoms, whereas one S atom of CS2 is located between two Pz ligands and the other S atom is between two Pt atoms. The optimized position of CS2 agrees with the experimentally reported X-ray structure. To elucidate the reasons for these differences, we performed an energy decomposition analysis and found that (i) both the large binding energy and the absorption position of CS2 arise from a large dispersion interaction between CS2 and the PCP, (ii) the absorption position of CO2 is mainly determined by the electrostatic interaction between CO2 and the Pt moiety, and (iii) the small binding energy of CO2 comes from the weak dispersion interaction between CO2 and the PCP. Important molecular properties relating to the dispersion and electrostatic interactions, which are useful for understanding and predicting gas absorption into PCPs, are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.