Abstract

Global warming due to greenhouse effects is on the rise, and many efforts to reduce emissions of CO2 which is a major greenhouse gas from combustion of carbonaceous materials are being made. In this study, chemical absorption of CO2 into N-methyldiethanolamine (MDEA) solution combined with effective activator piperazine (PZ), from a gas mixture containing N2 was carried out in a high-throughput microporous tube-in-tube microchannel reactor (MTMCR). As a novel microreactor, MTMCR greatlyintensifies gas–liquid mass transfer due to its large gas–liquid interfacial area. The effects of different parameters on the overall volume mass transfer coefficient and CO2 removal efficiency were investigated. The results showed that both mass transfer coefficient and CO2 removal efficiency increased with an increase in the liquid flow rate, temperature and concentration of liquid solvent. Also, the gas–liquid mass transfer efficiency increased with a decrease in the size of the micropore and annular channel of MTMCR. The volume mass transfer coefficient and CO2 removal efficiency reached 1.70s−1 and 97%, respectively, at flow rates of 100L/h and 5.32L/h for gas and liquid respectively, with alkanolamine solutions containing 10wt.% MDEA and 4wt.% PZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.