Abstract

Donor-modified TiO2 nanoparticles are interesting hybrid systems shifting the absorption edge of this semiconductor from the ultra-violet to the visible or infrared light spectrum, which is a benefit for several applications ranging from photochemistry, photocatalysis, photovoltaics, or photodynamic therapy. Here, we investigate the absorption properties of two catechol-like molecules, that is, dopamine and DOPAC ligands, when anchored to a spherical anatase TiO2 nanoparticle of realistic size (2.2 nm), by means of time-dependent density functional theory calculations. By the differential absorbance spectra with the bare nanoparticle, we show how it is possible to determine the injection mechanism. Since new low-energy absorption peaks are observed, we infer a direct charge transfer injection, which, unexpectedly, does not involve the lowest energy conduction band states. We also find that the more perpendicular the molecular benzene ring is to the surface, the more intense is the absorption, which suggests aiming at high molecular packing in the synthesis. Through a comparative investigation with a flat TiO2 surface model, we unravel both the curvature and coverage effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.