Abstract

3-n-Butylphthalide (NBP) has a considerable neuroprotective effect and is currently used for the treatment of ischemic stroke. NBP was launched on the market in 2004. However, information on its metabolism in humans and preclinical animal models is insufficient. Although the metabolism of unradiolabeled NBP in humans has been reported, the quantitative metabolite profile, blood-to-plasma radioactivity concentration ratio (B/P), and tissue distribution of this drug remain unclear. We evaluated the pharmacokinetics, tissue distribution, mass balance, and metabolism of NBP in rats after a single oral dose of 60 mg/kg (100 μCi/kg) [14C]NBP to understand the biotransformation of NBP comprehensively and to provide preclinical drug metabolism data prior to human mass balance studies with [14C]NBP in the near future. NBP absorption was rapid (Tmax = 0.75 h) and declined with a terminal half-life of 9.73 h. In rats, the B/P was 0.63 during the 48 h postdose period, indicating that drug-related substances did not tend to be distributed into blood cells. Tissue distribution was determined by using the oxidative combustion method. NBP-related components were widely distributed throughout the body, and high concentrations were detected in the stomach, small intestine, fat, bladder, kidney, liver and ovary. At 168 h after oral administration, the mean cumulative recovered radioactivity was 99.85% of the original dose, and was 85.12% in urine and 14.73% in feces. Metabolite profiles were detected via radiochromatography. A total of 49 metabolites were identified in rat plasma, urine, and feces. The main metabolic pathways were oxidation, glucuronidation, and sulfation. Overall, NBP was absorbed rapidly, distributed throughout the body, and excreted in the form of metabolites. Urine was the main excretion route, and the absorption, distribution, metabolism and excretion of NBP showed no significant gender difference between male and female rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.