Abstract

This research article studied absorption coefficient dependent losses and efficiency of thin film luminescent solar concentrator (LSC). The optimum absorption coefficient was determined by fabricating red dye doped thin film LSCs with varying absorption coefficients of 24–202 cm-1. The optical, electrical, and ray-trace model predicted results were compared to establish the optimum absorption coefficient for fabricated thin film LSCs. The optical and electrical efficiencies of thin film LSCs are a function of absorption coefficient; follow linearly at lower values, gradually becoming non- linear at higher values of absorption coefficient which restricts the overall efficiency. The multi layered ray–trace model predicted results deviated from the experimental results at high absorption coefficient. Non-linearity was introduced by losses mechanism of re-absorption, resonant energy transfer (RET), and scattering in thin film LSCs. Re-absorption losses were found to be dependent on optical path-length and absorption coefficient of thin film. They were identified and quantified through locally collected emission and optical path-length in thin film LSCs. Re-absorption losses caused a red shift in emission peak by ≈ 20 nm as the absorption coefficient increased from 24 to 202 cm-1. RET decreased fluorescence life time of dye from 5 ns to 2 ns for the absorption coefficient increased from 24–202 cm-1. These absorption coefficient dependent losses limit the optical and electrical efficiency of thin film LSC devices, and compared with bulk LSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.