Abstract

AbstractChitosan fibers were treated with aqueous solutions of ZnCl2 and CuSO4·5H2O to prepare zinc and copper containing fibers, respectively. Significant weight gains were obtained as the zinc and copper ions were absorbed onto the fibers through chelation with the primary amine groups. The fibers were then placed in contact with aqueous solutions containing NaCl and water soluble proteins, respectively, to assess the release of zinc and copper ions. Results showed that the release of zinc and copper ions were affected by the treatment temperature, time, and the composition of the contacting media. More metal ions were released when the fibers were in contact with aqueous protein solutions than in NaCl solution, indicating the binding abilities of the protein molecules for zinc and copper ions. The zinc and copper containing fibers were tested for their antimicrobial effects against several species of bacteria commonly found in wound and skin. Results showed that these metal containing chitosan fibers had much stronger antimicrobial properties than the original chitosan fiber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.