Abstract

The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg 2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg 2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.