Abstract
The accurate calculation of transition energies and properties of isolated molecules is not enough for realistic simulations of their absorption and emission spectra in solution. In fact, the solvent influences the solute geometry, electronic structure, and response to external fields, and a proper description of the solvent effect is fundamental. However, the computational cost of including explicit solvent molecules around the solute becomes rather onerous when an accurate method such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) is employed. The polarizable continuum model of solvation (PCM) may provide an efficient alternative to explicit models, since the sampling of solvent configurations is implicit and the solute-solvent mutual polarization is naturally accounted for. In this contribution, the absorption and emission spectra of molecules in solution are modeled through the EOM-CCSD-PCM method. The equilibrium solvation regime is employed for the geometry optimization of the solute molecule in the ground and excited states, while the nonequilibrium solvation regime is employed for vertical transitions. The theory, implementation, and prototypical applications of the method are presented. The numerical tests involve solvents that are particularly challenging for PCM: low-polar and protic polar solvents. Nonetheless, the experimental trends are well reproduced, and the overall agreement with the measured data is remarkable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.