Abstract

Atmospheric carbonaceous aerosols consisting of black carbon and organic carbon influence Earth’s radiative balance by interacting with solar radiation. A subset of organic aerosols known as brown carbon is absorbing in nature and poorly characterized in terms of optical properties. Brown carbon can warm the local and regional atmosphere depending upon its absorbing capacity, mixing state, and meteorological conditions. We report a diurnal spectral absorbing refractive index of brown carbon over North India and its influence on regional radiative forcing. Measurements show the presence of highly absorbing brown carbon consisting of soluble and non-soluble fractions having distinct spectral absorption. The brown carbon refractive index at 365 nm shows a 50% reduction during daytime when compared to nighttime as a result of combined effects of reduced primary emissions and photobleaching/volatilization. Brown carbon and the lensing effect as a result of a thin absorbing coating exert a forcing of −0.93 ± 0....

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.