Abstract

To determine the absorbed radiation dose to the female breast during chest computed tomography (CT), and whether a custom-designed breast shield can reduce that dose. Bilateral breast phantoms were combined with an anthropomorphic torso phantom. Each breast phantom contained 20 thermoluminescent dosimeter (TLD) cavities. Eight cavities were used per phantom. Absorbed radiation was measured using TLD 100 s. Three-stacked TLDs comprised a set. Three sets of three TLDs were positioned at eight designated locations and three depths (surface; 1 cm; 4 cm). One set of three TLDs was positioned at eight additional designations, 1cm deep. Each breast was divided anatomically into quadrants. In total, 32 TLD sets/96 TLDs were deployed. The breast-torso phantom was consecutively imaged using a 16-detector array CT machine. Subsequently, 32 new TLD sets were similarly placed, the phantom re-imaged in a likewise manner, but with the application of a tungsten-antimony composite breast shield. TLD readings were averaged and calculated. Average absorbed radiation doses for unshielded right and left breast phantoms ranged from 13.83-19.36 mGy, and 14-20.47 mGy, respectively. The absorbed dose in the shielded right and left breast was reduced to 6.64-8.12 mGy, and 6.7-8.03 mGy, respectively. Average absorbed radiation doses based on the depth for the unshielded breasts ranged from 15.4-18.3 mGy. Shielding reduced this dose to 7-7.9 mGy. Unshielded absorbed radiation doses based on anatomic quadrants ranged from 17.5-18.9 mGy. Shielding reduced this dose to 7-7.5 mGy. The average absorbed radiation dose to the unshielded female breast phantom is approximately 14-20 mGy. An externally applied shield can reduce this absorbed dose by 56-61%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.