Abstract

PurposeTreatment of pelvic organ prolapse (POP) often requires the use of synthetic mesh. In case of a novel and standardized bilateral apical fixation, both uterosacral ligaments are replaced by polyvinylidene-fluoride (PVDF) tapes. One of the main problems remains the fixation method, which should be stable, but also simple and quick to use. The current study evaluated biomechanical differences between the cervical tape fixation with sutures (group 1), non-absorbable tacks (group 2) and absorbable tacks (group 3) in an in vitro porcine model.MethodsA total of 28 trials, conducted in three groups, were performed on porcine, fresh cadaver uteri. All trials were performed until mesh, tissue or fixation device failure occurred. Primary endpoints were the biomechanical properties maximum load (N), displacement at failure (mm) and stiffness (N/mm). The failure mode was a secondary endpoint.ResultsThere was a significant difference between all three groups concerning the maximum load. Group 1 (sutures) supported a maximum load of 64 ± 15 N, group 2 (non-absorbable tacks) yielded 41 ± 10 N and group 3 (absorbable tacks) achieved 15 ± 8 N.The most common failure mode was a mesh failure for group 1 and 2 and a fixation device failure for group 3.ConclusionThe PVDF-tape fixation with sutures supports 1.5 times the load that is supported by non-absorbable tacks and 4.2 times the load that is supported by absorbable tacks. Nevertheless, there was also a stable fixation through tacks. Sutures are the significantly stronger and cheaper fixation device but may prolong the surgical time in contrast to the use of tacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call