Abstract
In this work, we design a type of controller that consists of adding a specific set of reactions to an existing mass-action chemical reaction network in order to control a target species. This set of reactions is effective for both deterministic and stochastic networks, in the latter case controlling the mean as well as the variance of the target species. We employ a type of network property called absolute concentration robustness (ACR). We provide applications to the control of a multisite phosphorylation model as well as a receptor-ligand signalling system. For this framework, we use the so-called deficiency zero theorem from chemical reaction network theory as well as multiscaling model reduction methods. We show that the target species has approximately Poisson distribution with the desired mean. We further show that ACR controllers can bring robust perfect adaptation to a target species and are complementary to a recently introduced antithetic feedback controller used for stochastic chemical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.