Abstract

The problems associated with visual interpretation of coronary arteriograms have been well-documented. There is a need for more physiologic means of assessing coronary artery stenosis during routine coronary arteriography. Volumetric coronary blood flow assessed as a function of time can be a valuable aid in the analysis of functional significance of arterial obstruction. A volumetric coronary blood flow measurement technique was investigated in a swine animal model using phase matched temporal subtraction images. The left anterior descending (LAD) coronary artery of swine animal models were instrumented with an ultrasound flow probe (US) and a vascular occluder producing stenosis. Contrast material injections (2-4 ml/sec for 3 sec) were made into the left coronary ostium during image acquisition. Phase-matched temporal subtraction (DSA) images were used to measure volumetric coronary blood flow in the LAD. In addition, a technique for automatic estimation of iodine calibration slope was also investigated. In 49 independent comparisons, the mean coronary blood flow (FPA) correlated extremely well with the mean US flow (FPA = 0.92US + 1.42 ml/min, r = 0.99, standard error of estimate (SEE) = 4.32 ml/min). Further more, the automatic iodine calibration technique was shown to be very accurate. In conclusion, accurate volumetric coronary blood flow measurements can be made before the onset of significant changes in coronary blood flow due to contrast injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call