Abstract

Absolute value measurements of turbulence amplitude in magnetically confined high-temperature plasmas can effectively explain turbulence-driven transport characteristics and their role in plasma confinements. Two-dimensional phase contrast imaging (2D-PCI) is a technique to evaluate the space-time spectrum of ion-scale electron density fluctuation. However, absolute value measurement of turbulence amplitude has not been conducted owing to the nonlinearity of the detector. In this study, the absolute measurement method proposed in the previous study is applied to turbulence measurement results in the large helical device. As a result, the localized turbulence amplitude at ne = 1.5 × 1019 m-3 is approximately 3.5 × 1015 m-3, which is 0.02% of the electron density. In addition, the evaluated poloidal wavenumber spectrum is almost consistent, within a certain error range, the spectrum being calculated using a nonlinear gyrokinetic simulation. This result is the first to the best of our knowledge to quantitatively evaluate turbulence amplitudes measured by 2D-PCI and compare with simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.