Abstract

A four dimensional treatment of nonrelativistic spacetime gives a natural frame to deal with objective time derivatives. In this framework some well known objective time derivatives of continuum mechanics appear as Lie derivatives. Their coordinatized forms depend on the tensorial properties of the relevant physical quantities. We calculate the particular forms of objective time derivatives for scalars, vectors, covectors, and different second order tensors from the point of view of a rotating observer. The relation of substantial, material, and objective time derivatives is treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.