Abstract

We present absolute throughput analysis of several crystals for the Orion High-REsolution X-ray (OHREX) imaging crystal spectrometer using ray tracing and experimental measurements. The OHREX spectrometer is a high-resolution x-ray spectrometer designed to measure spectral line shapes at the Orion laser facility. The spectrometer is fielded with up to two spherical crystals simultaneously covering two independent spectral ranges. Each crystal has a nominal radius of curvature of R = 67.2 cm and is fielded at a nominal Bragg angle of 51.3°. To cover different bands of interest, several different crystals are available, including Ge (111), KAP, and several cuts of quartz, whose resolving power λ/Δλ exceeds 10 000. The calibrated response of the available crystals has previously been reported from measurements at the EBIT-I electron beam ion trap at Lawrence Livermore National Laboratory. Here, we model the absolute throughput of each crystal using ray tracing and verify the results using experimental data for the quartz (101¯1) crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.