Abstract

We derive absolute stability results of Popov and circle-criterion types for infinite-dimensional discrete-time systems in an input–output setting. Our results apply to feedback systems in which the linear part is the series interconnection of an l 2 -stable linear system and an integrator and the nonlinearity satisfies a sector condition which allows for saturation and deadzone effects. The absolute stability theory is then used to prove tracking and disturbance rejection results for integral control schemes in the presence of input and output nonlinearities. Applications of the input–output theory to state-space systems are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.