Abstract

Nonlinear active disturbance rejection control is much more effective than linear active disturbance rejection control in tolerance to uncertainties and disturbances. However, it brings a great challenge for theoretical analysis, especially the stability analysis. This article proposes a linear matrix inequality method to analyze the absolute stability of generalized nonlinear active disturbance rejection control form which contains multiple nonlinearities with different parameters in both extended state observer and control law for single-input single-output systems. The generalized nonlinear active disturbance rejection control algorithm and the single-input single-output system are transformed into a direct multiple-input multiple-output Lurie system. A sufficient condition to determine its absolute stability based on linear matrix inequality method is given. The Lyapunov function of the Lurie system exists when the group of linear matrix inequalities is feasible. The free parameters and coefficients in Lyapunov function are given by the solution of these linear matrix inequalities. The electromagnetic valve actuator system in camless engine is presented as an application to illustrate how to perform the proposed method for absolute stability analysis and the stable region of parameter perturbations is obtained via the method. Simulation results show that the linear matrix inequality–based method is convenient and effective to determine whether the closed-loop system is absolutely stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.