Abstract

We describe and experimentally implement a single-ion local thermometry technique with absolute sensitivity adaptable to all laser-cooled atomic ion species. The technique is based on the velocity-dependent spectral shape of a quasi-dark resonance tailored in a J $\rightarrow$ J transition such that the two driving fields can be derived from the same laser source leading to a negligible relative phase shift. We validated the method and tested its performances in an experiment on a single 88 Sr + ion cooled in a surface radio-frequency trap. We first applied the technique to characterise the heating-rate of the surface trap. We then measured the stationary temperature of the ion as a function of cooling laser detuning in the Doppler regime. The results agree with theoretical calculations, with an absolute error smaller than 100 $\mu$K at 500 $\mu$K, in a temperature range between 0.5 and 3 mK and in the absence of adjustable parameters. This simple-to-implement and reliable method opens the way to fast absolute measurements of single-ion temperatures in future experiments dealing with heat transport in ion chains or thermodynamics at the single-ion level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.