Abstract

Rate constants for abstraction of secondary and tertiary hydrogens from structurally different alkanes by the tert-butylperoxy radical in solution at 30 °C have been determined by competitive experiments in the presence of tert-butyl hydroperoxide. Rate constants fall in the range 1 × 10−4to 9 × 10−4and 1 × 10−3–2 × 10−2 M−1 s−1 for secondary and tertiary aliphatic C—H bonds, respectively. The most reactive secondary hydrogen is, therefore, almost as reactive as the least reactive tertiary hydrogen. Differences in reactivity within a type of aliphatic C—H bond are governed by differences in steric hindrance to attack by the peroxy radical and by relief of steric strain upon removal of the labile hydrogen. Rate constants for reaction of perdeuterated methylcyclohexane and 3-methylpentane are much smaller than the values calculated from the maximum primary kinetic isotope effect for this reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call